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FOREWORD

The Project MAGNET program, which began in 1951 and which is now more than 40 years old,
has primarily been tasked to globally collect high-level, vector aeromagnetic data to support
magnetic mapping for navigational purposes. However, the unique remote-sensing capabilities of I
the Project MAGNET aircraft are only fully realized in low-level applications. In the low-level
mode of operations, this aircraft has been tasked to perform mineral resource evaluations in
southeast Asia, to evaluate hazards to submarine navigation in remote areas around the world, and I
even to search for sunken ships. Yet, having the ability to collect high-quality geophysical data
sets from unique data acquisition platforms is of little value without also having developed
sophisticated analytic tools to extract desired information from the data.

This report, which concerns a low-level Project MAGNET survey of the northern Juan de Fuca
and Explorer Plates, a region of intense scientific interest due to its volcanic and tectonic activity
and due to its proximity to the west coasts of Canada and the United States, exhibits a generous
mixture of both high-quality survey data and sophisticated mathematical and computer analysis.
The results of the analyses permit one to peer several kilometers below the bathymetric layer of
the ocean to see hidden basalt structures with unusual detail. Occasionally, one of these basalt
structures will rise in the form of a seamount well above the usual oceanic sediment coating. It
then becomes a hazard to submarine navigation and consequently becomes of interest and
concern to the navy.
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Commanding Officer
Acting

I

I!



~-INCLI T(

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
COLOR PAGES WHICH DO NOT
REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.



Form Approved

REPORT DOCUMENTATION PAGE 1 Nor Ap04prov

Pulic mo• nirtng oburdn tor thist coitectiofl Of ton4cmation is estimate to average 1 hour M respor4e. •nclu•ang the time for reviewing instructions. warching existing clots sourtes.
gofiering end Mamintainng Ihe dita needed. and cemomtimng and rev•ewing the collection of information e•teO comments recaraing this burden estimate Or any Other 6soect of this

O of information. ,nclud1ng ugguaton or reduong this OurOen. t0 Washington 0eadQuarten Services. Directorate for information OPerations and Reorts. 12 IS JeffersonU oem, 10s gtihway. Suite 1204. Arlington. VA 22202-1302. and tO the Office of Management aind Budget. Paperworit Reduction Protect (0704-0118). Washington. D( 20S03.

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I July 1993 Technical Report
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Magnetic Field Modeling of the Northern Juan de Fuca
and Explorer Plates

5. AUTHOR(S)

John H. Quinn
Donald L. Shiel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Commanding Officer

Naval Oceanographic Office TR 309
1002 Balch Boulevard
Stennis Space Center, MS 39522-5001

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES) kS316MOMIG/MONITORING

Commander NTIS CA&I
Naval Oceanography Command DTIC TAB ]
1020 Balch Boulevard Unannounced 0
Stennis Space Center, MS 39522-5001 Justification ............

It. SUPPLEMENTARY NOTES By .

Distribution B

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DIST001IM TiORD
Avail and / or

Approved for public release; distribution is unlimited. Dist S 1 al

13. ABSTRACT (Maximum 200 words)
A detailed low-level (500-ft) vector-aeromagnetic survey of the northern Juan de Fuca
and Explorer plates, from 470 N to 510 N and from 1240 W to 1300 W, was conducted
by the U.S. Navy's Project MAGNET aircraft in July 1981. The measured vector
component data from this survey were used to create a 65,536 coefficient rectangular-
harmonic, crustal, magnetic potential-field model for the region. This model, in
turn, was used to generate self-consistent, uniformly spaced vector and gradient
field grids which, via inverse modeling, were used to estimate magnetic-source-
depths and relative magnetizations for the entire survey area at approximately a
1.5-rmi resolution.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Aeromagnetic surveys, Juan de Fuca, magnetic-field model, 86
Project MAGNET, rectangular-harmonic modeling techniques 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01.280-5500 Standard Form 298 (Rev. 2-89)

"Uried tri•D ANSI Std Z39-18
298-102



TABLE OF CONTENTS

Section 1. Introduction .................................................................................. I

Section 2. Data Collection and Reduction Procedures .......................................... 5

2.1 Instrumentation, Calibration, Environmental Corrections, and Processing ................. 5
2.2 Coordinate Transformations .................................................................... 8

Section 3. The Potential Field Model ............................................................ 12

3.1 The Regional Magnetic-Field Model ........................................................... 13
3.2 The Local Magnetic-Field Model ............................................................... 18
3.2.1 Computing the Local Magnetic-Field Vector from the Model ......................... 353.2.2 Computing the Magnetic-Gradient Tensor from the Model ............................. 38

Section 4. Inverse Modeling (Magnetic Depth-to-Source) .................................... 60

Section 5. Comments on Nonuniqueness ......................................................... 86

References ............................................................................................. 89

LIST OF FIGURES

FIGURE

1. Juan de Fuca Aeromagnetic Survey Design ............................................... 3

2. Juan de Fuca DBDB5 Bathymetry ........................................................... 4

3a. Juan de Fuca X-Component Magnetic Field .............................................. 39

3b. Juan de Fuca Y-Component Magnetic Field .............................................. 41

3c. Juan de Fuca Z-Component Magnetic Field .................................................. 43

4a. Juan de Fuca XX-Component Magnetic-Field Gradient ................................. 49

4b. Juan de Fuca XY-Component Magnetic-Field Gradient ................................ 51

4c. Juan de Fuca XZ-Component Magnetic-Field Gradient ................................. 53

4d. Juan de Fuca YY-Component Magnetic-Field Gradient ................................ 55

4e. Juan de Fuca YZ-Component Magnetic-Field Gradient ................................. 57

IS



*1
LIST OF FIGURES (CON.)

FIGURE 3
4f. Juan de Fuca ZZ-Component Magnetic-Field Gradient ................................ 59

5. Juan de Fuca Magnetic-Source-Depth ..................................................... 69

6a. Juan de Fuca X-Component Magnetization ............................................... 71

6b. Juan de Fuca Y-Component Magnetization ................................................... 73

6c. Juan de Fuca Z-Component Magnetization ............................................... 75

7a. Juan de Fuca Z-Component Magnetization Profile (n0) Along Longitude 129.65W.. .77

7b. Juan de Fuca Z-Component Magnetization Profile (nT) Along Longitude 129.80W.. .79

7c. Juan de Fuca Z-Component Magnetization Profile (nT) Along Latitude 47.30N ....... 81

7d. Juan de Fuca Z-Component Magnetization Profile (nT) Along Latitude 48.23N ....... 83

7e. Juan de Fuca Z-Component Magnetization Profile (nT) Along Latitude 48.40N ....... 85

LIST OF TABLES

TABLE

1. Project MAGNET Flights in the Northern Juan de Fuca/Explorer Plate Region .......... 6

2. Regional Magnetic Model for the Northern Juan de Fuca/Explorer Plates ................. 16

3. Regional Magnetic Model for the Northern Juan de Fuca/Explorer Plates:
Revision of Table 2 Based on Symmetry Considerations ................................ 17

4. Rectangular-Harmonic Model Coefficients of the Juan de Fuca/Explorer Plate
Regions, Low Degree and Order Terms Only .............................................. 22

5. Elements of the A Matrix Elements ......................................................... 64

6. Derivatives of the A Matrix Elements ....................................................... 65

iv
•5' lag



1. INTRODUCTION

The Juan de Fuca and Explorer plates have been extensively surveyed over a period of

Sseveral decades, primarily using shipbome scalar magnetometers, as noted by Raff and Mason

i (1961), Elvers et al. (1974), and more recently by Tivey and Johnson (1990). The tectonic

evolution of this area is summarized by Botros and Johnson (1988) and by Karsten and Delaney

'(:989), while the present geomorphological view of the region is summarized by Finn (1990).

The most detailed studies of the region have concentrated on the special relationship that exists

between the Axial and Cobb seamounts and the Juan de Fuca Ridge. This relationship is

Idescribed from the magnetic viewpoint by Tivey and Johnson (1990), from the bathymetric

viewpoint via Sea Marc I data by Applegate (1990), from the chemical viewpoint by Rhodes et

al. (1990), from the gravity viewpoint by Hildebrand et al. (1990), and from the seismic

reflection and refraction viewpoints by Morton et al. (1987) and by White and Clowes (1990).

The subduction of the Juan de Fuca plate under the western continental margin of the North

American Plate has been studied as far east as the Washington and Oregon Cascade Mountain

Range, using teleseismic P-wave tomographic imaging techniques, accounts of which are given

Sby Rasmussen and Humphreys (1988) and by Harris, Iyer, and Dawson (1991).

The original purpose for the analysis being presented here was to develop a practical method

of identifying hazards to underwater navigation for the U.S. Navy, using magnetic techniques

that take advantage of the Navy's unique m gnetic survey resource, the Project MAGNET

RP-3D Orion aircraft. The Project MAGNET program originated in 1951. During the

I program's lifetime, several aircrft have been used (Coleman, 1992). The current aircraft has the

uniqu capability of performing large-scale vector aeromagnetic surveys in remote ocean areas

i in relatively short time spans. The Juan de Fuca area provided a sufficiently geologically
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complicated morphology to test the robustness of any method that might be developed. The

most prominent hazard is the seamount. The basic assumption is that most of these seamounts

are volcanic in origin and therefore are composed of basalt materials that have strong magnetic

properties. The Juan de Fuca survey area includes the Heck seamount chain, the Juan de Fuca

Ridge, the Endeavor Segment, and the Explorer Ridge, all of which are volcanic in origin.

Because the aircraft provides vector magnetic measurements, it is an easy matter to produce a

rectangular-harmonic magnetic potential-field model from survey data which have been

collected at a single altitude. After appropriate data reduction these data can be gridded and

subsequently transformed from geodetic to rectangular coordinates, where the data is then

amenable to Fast Fourier Transform (FFT), rectangular-harmonic modeling techniques, which

will subsequently be described. Technical aspects of rectangular-harmonic analysis are

discussed by Alldredge (1981, 1982). However, our methods and procedures are somewhat

different than his.

The model presented here is derived from survey data collected during a detailed, low-level

(500-ft), U.S. Navy Project MAGNET, vector-aeromagnetic survey performed during the

months of August and September 1981. This survey covers the ocean area bounded from 470 N

to 510 N and from 1240 W to 1300 W as indicated in Figure 1. The corresponding bathymetry

for this region, taken from the 5-minute gridded data base DBDB5, is shown in Figure 2. The

model, in turn, is used to recompute the magnetic vector-component grids from which the model

is derived and to compute as well, the magnetic gradient-tensor component grids of the region.

These magnetic vector and gradient-tensor components are combined via an inverse-modeling

technique which employs the concept of uniformly magnetized rectangular prisms to estimate

the magnetic depth-to-source for the entire surveyed region. As a by-product the relative

2
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magnetic morphology (i.e., the magnetization distribution) of the region is also estimated. The

rectangular-prism, inverse-modeling technique employed in this study has a long history with

many variations. The variation used here is described in detail by Quinn and Shiel (1993). This

technique does not distinguish between remnant magnetization and induced magnetization.

f 1. DATA COLLECTION AND REDUCTION PROCEDURES

The Juan de Fuca survey was conducted during the months of August and September 1981.

I The actual dates flown are given in Table 1 along with the project identification and the flight

numbers. These identifications are attached to the data sets by the Naval Oceanographic Office,

which conducted these surveys in cooperation with the Navy's P3 squadron VXN-8, located at

Patuxent River Naval Air Station, Patuxent River, Maryland. Additional Project MAGNET

I flights in the Juan de Fuca area were conducted in 1980 and 1983. These flights were not used

in this study but are nevertheless listed in Table 1 as a matter of completeness for the benefit of

future studies.

I
2.1 Instrumentation, Calibration, Environmental Corrections, and Processing

The 1981 survey was conducted at an altitude of 500 feet, as determined by a precision

I Rosemont Barometric Altimeter used by the pilot. The densely spaced East-West survey tracks

were separated by 3 nmi except in a magnetically quiet zone located over the trench, adjacent to

the continental shelf, where the spacing was increased to 6 nmi. Survey tracks flown for control

I purposes in the North-South direction were separated by 20 nmi. The effective along-track

I sample rate was 0.5 Hertz, while the speed of the aircraft was approximately 240 nmi per hour.

Magnetograms from a nearby geomagnetic observatory at Victoria, British Columbia, were used

I
1 5



Table 1. Project MAGNET Flights in the Northern Juan de Fuca/Explorer Plate Regions

Project # Flight # Year Month Day Senior Scientists I
A32 - 053 9102 1980 April 23 Jesus Anglero,

Charles Gunn &

A32 - 053 9103 1980 April 25 Mike Anderson

A32- 154 9411 1981 August 3 Donald Wilson,

A32 - 154 9412 1981 August 5 Steve Feldman

A32-154 9366 1981 August 7 " I

A32-154 9367 1981 August 10 5 1!

A32- 154 9413 1981 August 12o

A32- 154 9414 1981 August 14 "

A32- 154 9418 1981 September 3 3
C32 - 451 9429 1983 November 9 Virgil Bettencourt &

Donald Wilson

C32 - 451 9430 1983 November 11

C32 - 451 9431 1983 November 16

6



to monitor and remove short-term (i.e., < 2 months) temporal magnetic variations. The most

Iprominent contribution to these short-term temporal variations is the Solar quiet (Sq) Daily

3 Variation (DV) of the geomagnetic field and its corresponding induction field. Campbell,

Schiffmacher and Kroehl (1989) have globally modeled the Sq variations. Their model is now

I available from the National Geophysical Data Center which is located in Boulder, Colorado.

1 These Sq magnetic variations, the ionospheric currents that generate them, and the

corresponding induced magnetic fields from the Earth's conducting crust and upper mantle are

5described in some detail by Campbell and Schiffmacher (1988a, 1988b) and by Campbell

I (1989a, 1989b).

Data from the magnetic observatory were also used to calibrate the vector magnetometer and

I to compensate for aircraft-generated magnetic fields. Typical Project MAGNET

3 calibration/compensation procedures, which involve airswings over magnetic observatories, are

described by Coleman (1992). A portable Vector Magnetic Ground Station (VMGS) was

established at McChord Air Force Base near Tacoma, Washington, also for the purpose of

eliminating temporal variations from the data. The typical 11- to 12-hour flights were

conducted at night to further reduce the effect of temporal magnetic variations generated by

ionospheric and magnetospheric current systems and their corresponding crustal induction

3effects.
Navigation and attitude were determined using the Navy doppler radar satellite navigation

system and a redundant set of three inertial navigation/attitude systems. The RMS navigation

3 error is estimated to be on the order of.t nmi RMS, while the attitude errors for Yaw, Pitch, and

Roil are estimated to be on the order of I arc-minute RMS. These data, like the magnetics data,

r i extensive editing for spurious noise spikes, drift corrections, and time syncing.

U 7



Generally, the recorded time is accurate to within a few milliseconds. The Juan de Fuca survey

took place prior to the deployment of the Global Positioning System (GPS). So, GPS navigation

was not availale.

Having reduced the data for each flight, the Main (core-generated) magnetic field was

removed using the 1980 Epoch, Degree 13 Spherical-Harmonic Model (GSFC 12/83) of Langel

nd Estes (1985), which is based on MAGSAT data. The residual X, Y, and Z magnetic field

components are then essentially of crustal origin. Data for each magnetic component were

gridded separately and interpolated as necessary, into lat x Ion cells of 1.5 arc-minutes x 1.5

arc-minutes (i.e., roughly half of the East-West track spacing) such that each component consists

of 256 x 256 grid points. The Project MAGNET survey covered only ocean areas. It did not

extend beyond the coastline to the adjacent continental land area. So, the extreme east and

northeast portions of the grid were zero filled in such a way as to allow interpolation of the

magnetic residuals over the land areas from the coastline to the edge of the grid to smoothly

taper off to zero, thus avoiding later problems with Gibbs phenomena. The gridding process

also has the advantage of smoothing out instrument noise, navigational errors, and other

environmentally generated fields, not of crustal origin, that cannot otherwise be accounted for

and thus eliminated.

2.2 Coordinate Transformations

When the three magnetic-component residual grids are considered as a single vector unit,

each grid point has associated with it X-, Y-, and Z-component magnetic-field values

which are first transformed from geodetic to spherical coordinates (Cain et. al., 1967) and

subsequently from spherical to rectangular coordinates (Alldredge, 1981). These two

8



procedures involve not just coordinate transformations at the site of each grid point, but also

5 rotations of the residual magnetic-field vector at each grid point.

3 lThe geodetic position (i.e., latitude, longitude, and altitude) of a data point is denoted as

(X,q),h). The same position referenced to spherical coordinates, corresponding to the geocentric

radius, the colatitude, and the longitude is denoted as (r,9,q). So, in geodetic coordinates, the

3residual magnetic-field vector components, corresponding to X-North, Y-East, and Z-Vertically

aDown, which forms a right-handed system, are denoted as B,(,Q,(h), By(,•.p,h), and Bz(i,,h).

Prior removal of the Main field at the mean survey epoch of 1981.2 using the GSFC 12/83

I model and removal of the short-term temporal variations using the observatory data eliminates

5 the time dependence from the residual data sets. The same residual magnetic-field

vector-component values referenced to spherical coordinates have radial, colatitudinal, and

I longitudinal components denoted as B,(rO,q), B,(r,0,q), and B,,(rO,q). Using this notation, the

geodetic to spherical coordinate transformation used at each grid point of each of the three

vector-component grids is as follows:IW
3Cos 6 = (la)

I sine F _1 - cos2O (b)

I h 1a2 -(aI-b2) s.2. + . 2  
(c

bhaJ& -(a.2 -b2) i21. + b2

r h2 + 2h4b - (a2 -b2)sin'. +& -(a'-bV)uua 2 1 (ld)i t:-• &2 -- (az - b2) Sin').

'1 9



(Ic)I

where, the parameters a and b are the semi-major and semi-minor axes of the ellipsoid to which

the geodetic coordinates are referenced. In the case of the Juan de Fuca survey, the reference

ellipsoid was that corresponding to the World Geodetic System 1972 (WGS-72). The

corresponding magnetic-field vector-component rotation from geodetic to spherical coordinates

is:

B,(r,0,fp) = sinotB(,0,h) + cosaB2 (kqh) (2a)

B,(r,0,p) = - cosoaB(kp,h) + sinaz(B Qp,h) (2b)

B,(r,0, p) = B7 Q,(p,h) (2c)

where the rotation angle a is defined as:

S= X +0 - ÷ (3)

and where 0 is computed from eq. (l a). Equivalently, the angle a may be defined by the

following convenient relations:

sint (al-b)si).cosl (4a)
r J,2w$o2).+ b2S W2s

t+ J&2 iCia+b Z. i

SCosa =, , (4b)

10



The 6sequt trafomtion from spherical coordinates (r,0,(P) to rectangular coordinates

(x,y,z) assumes that there is a plane tangent to the sphere with its origin at the point (R,00,%),

where R is the mean radius of the Earth as determined by the parameters of the refermce

ellipsoid, while Oo and qpo define the center of the survey area in spherical coordinates.

The rectangular coordinate-system axes are oriented with respect to the spherical • mate

li system such that the X-axis points north, in the direction of -0, the Y-axis points east in the

direction of +ip, and the Z-axis points vertically down in the direction of -r, thus making a

right-handed system. Consequently, the transformation from spherical coordinates to

rectangular coordinates takes the following mathematical form:

x = r sinm cosT (Sa)

y = r sin'l' sinT (Sb)

z - R - rcosI'i (5c)

where:

IF = cos-T[coso cosO + sineo sine cos(o - Oo)] (6a)

TN= smin-' -9 ) (6b)

and where:

cos' z: + f, - _sinl ITI :5 900  (7a)

11



cms -! -si- 2 r I11 > + 900 (7b)

The ig rotation of the magnetic-field vector components is: I
SII Im

B3(x,y,z) =- - Bt COS COS - BP cose0 sin (o + B. sine. (8a)

I I

B,(x, y,z) = - B( sin Spo + By COS SO (8b)

/ 
I 

I

Bz(x~y.z) = - B', sine.o cospo - BY sineo sin po - B, cos o (8c)

where: £

B =B, cos0 sin 4 + Be cos8i + B sine sinp (9b))

B = -BesinO + B cose (90)

After performing these transformations, the resulting gridded magnetic-field components

are suitable for rectangular-harmonic analysis. I

3. THE POTENTIAL FIELD MODEL

The three residual grids corresponding to the three magnetic-field components of the Juan de I
Fuca area ae presumed to be related to each other through a single magnetic potential V(x,yz). I

This potential is composed of two parts, a regional potential V,(x,yz) and a local potential

12



VL(x,yz) so thin

v (x, y, z) = Ve(x, y,z) + VL(X, Y, Z) (10)

The regional potential V1(x,yz) includes magnetic-field contributions generated in the Earth's

flird core and contributions generated by induced and remnant magnetization originating in the

deeper crust above the Curie depth. The regional magnetic potential has characteristic

wavelengths that am longer than the dimensions of the survey area. The local potential VL(x,yz)

on the other hand is presumed to be due to Main field induced and remnant magnetizations

originating in the Earth's upper crust and has characteristic wavelengths on the order of or

3 shorter than the dimensions of the survey area, which is taken to be rectangular with dimensions

L3, x L,,. From these lengths, a single characteristic dimension L of the survey area can be

defined as:
I

L =4T. (1)

In the case of the Juan de Fuca survey, L, = 664.466 kilometers, while Ly= 428.406 kilometers

so that L = 533.537 kilometers.

3.1 The Regional Magnetic-Field Model

The regional magnetic-field potential is taken to be of the following quadratic form.

Va(x,y,z) - a~xg + fbp x"xV pi, v = 1,2,3 , (12)

13



where tensor notation has been used in which the coordinates (x,yz) correspond to (x',x 2,x3) and

where Einstein sunmation notation is used so that repeated indices are to be summed over.

Thus, for instance:

a4xP u ax' + a2 x2 + a3x 3 = ax + a2y + a3z (13)

Using the single slash (/) notation (Adler, Bazin, and Schiffer C1975]) to denote partial

differentiation, so that for instance ( /p a I ), the regional magnetic field B.(x,yz), which is

the negative gradient of the regional potential, may be computed as:

B.(x,y,z) = -VR/x(x,y,z) = - ap - blx' (14)

It thus becomes clear that the constants -a are the regional mean values of the corresponding

magnetic-field components. The local magnetic field will therefore have a zero mean for each

of its magnetic components. Subsequently, taking the positive gradient of the regional

magnetic field yields the regional magnetic gradient tensor.

8 1b(x,y,z) = Buj,,(x,yz) = (15)

Thus, it is clear that the nine constant coefficients -b,, correspond to the average gradient or

slope over the entire survey area of each of the three magnetic components in each of the three

coordinate directions.

Since the regional magnetic gradient is obtained by taking two gradients of the regional

magpetic potential and since the order in which these gradients are performed is of no

Icsequence, the regional magnetic-gradient tensor must be symmetric. Also, since the regional

14
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magnetic potential must satf Lapla's equation, the regional magnetfc-gradient tensor must

also have zero trace. So, this tensor ha only five independent components and the coefficients

b,,3 satisfy the following symmetry conditions:

bpv = bvp (16a)

bp = 0 (16b)

Experim tally, due to noise and other experimental factors, these relations are never exactly

satisfied. The values obtained via least-squares fitting for the regional magnetic biases a% and

5 the regional magnetic gradients bl, v for the Juan de Fuca area are listed in Table 2. Note that the

vertical gradients were not measured since this would have required a second identical survey at

S• a second altitude. However, these gradients may be inferred from the information in Table 2

using the symmetry conditions above. Note also that due to noise and other measurement errors,

the b,2 coefficient is not identical to b2 , so that eq. (16a) is not completely satisfied. However,

I the average of these two quantities may be taken as the best estimate for both. Table 3 is the

I appropriate revision of Table 2, which does satisfy all of the symmetry relations for the

regional field.

The r0gional magnetic field, as determined from eq. (12) and the coefficients in

I Table 2, was removed from the three gridded magnetic-field component data sets that

magnetically characterize the Juan de Fuca/Explorer plate regions. The resulting residual grids

then define the local magnetic behavior of the combined regions.

I
3! 15



Table 2. Regional Magnetic Model for the Northern Juan do FucalExpiorer Plates

Parameter Units Value

Lx km 664.4660

LY km 428.4060

L km 533.5370

Z. km 5.3890

a, nT -32.3719

a2  nT 14.2246

a2  nT 14.1783

bi nT/km 0.1401

b12  nT/km 0.1589

b13  nT/km

b2l nT/km -0.0280

b2 nT/km -0.0509

b2 nT/km --

b3i nT/km -0.0261

bu nT/km -0.1225

b33 nT/km

16



Table 3. Regional Magnetic Model for the Northern Juan de Fuca/Explorer Plates:
-3 Revision of Table 2 Based on Symmetry Considerations

3 Parameter Units Value

LZ km 664.4660

3 km 428.4060

5L km 533.5370

Z. km 5.3890

- a, nT -32.3719

3 a2  nT 14.2246

a3 nT 14.1783

bi nT/km 0.1401

b,2 nT/km 0.0654

b13 nT/km -0.0261

b1l nT/km 0.0654

1b nT/km -0.0509

b2 nT/km -0.1225

"b3, nT/km -0.0261

3b, nT/km -0.1225

b33 nT/km -0.0892

li1V
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3.2 Ile Local Magmetic-Fleld Model

It is now assumed that the regional trends and biases have been removed from the gridded

survey data. The local potential-field model is then taken to be the solution of Laplace's 3
equation in rectangular coordinates and may be written in the following form:

VL(X. ,YZ) = -x ~ A.. cos nO(x) cos mpky) + B..= cos nO(x) sin mp(y) +3

(17)
D. sinnB(x) cosmp(y) + E,.sinnO(x) sinm~p(y)]ek-z

where, for a rectangular area of dimensions L. x LY: I

X .L, < x :5 +A e (18a)

___< 
(18b)

T( , -T a Y <9 +L lb

and where the wavenumber k. is given by the relation: 3

k(. 2x ) + (.M) 1 n N; 1 m M (19) 3

The parameters N and M were both assigned the value of 128 in anticipation of the subsequent

use of the 2-dimensional FFT, while the parameter L was previously defined by eq. (11).

The objective is to determine the rectangular-harmonic coefficients A. ., B.=, Do., a

and E,. , which are real-valued constants with units of nanoTeslas (nT), using the gridded,

mridual magnedecfield vector components derived from the survey data. These magnetic-field
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components am related to the negative gradients of the local magnetic potential defined by eq.

(17), so that:

BL(xy,Z) = - VVL(XYZ) (20)

Consequently, the three residual magnetic-field components may be expressed as follows:

N M

BL,(x,y,z) _ + 'I" 2n[A.. sinnO(x) cosmp(y) + B. sinne(x) sinmp(y) -

(21a)
D-- cosnO(x) cosmp(y) - E.. cosn0(x) sinmigy)]el-z

N M

BLY(x,y,z) + y- E Z m[A. cosnO(x) sinm i(y) - B. cosnO(x) cosmq(y) +
rn-I mat

(21b)D. sinnO(x) sinmp(y) - E.- sinnO(x) cosmlrny)]ek-8

N N

BLZ(x,y,z) = - I 2:-, k..-[ A . cosnO(x) cosmVy) + B-. cosnO(x) sinmp(y) +
Ma l(21c)

D.. sinne(x) cosmnq(y) + E. sinnO(x) sinmp(y)]ekm-

3 For convenience in the following discussion, the subscript L will be suppressed, and it will

be assumed from this point onward that we are concerned with the local magnetic potential and

the local fields and gradients that can be derived from it. We then proceed by noting that the

rectangular-harmonic coefficients of the local magnetic potential can be computed from any one

of the three gridded components of the geomagnetic residual field, which are presumed to have

19



been measured at some nearly constant survey altitude, H, (i.e., z = -H) above the x-y plane. If

the X-component of the residual magnetic field is used, then, using the usual orthogonality

conditions for the sine and cosine functions, these coefficients are determined as follows:

Am = + Lx x x sinnO cosmip Bt(e,p,-H)dOd&p (22a)
nx2L J-xf-

B-. = + L ' e -H sinnO sinmpo B,p(8,T,-H)dedpo (22b)

D-= -L_.1  ekmI cosnG cosiuqoB,(6,qo,-H)dOdqo (22c)

D -m L e- j cosn0 sinmpm B.(e,(p,-H)ded(p (22d)

Alternatively, using the Y-component magnetic residuals, these coefficients are determined as:

Am= + LY ek.H X cos nO sin mq By(O, p, -H) dO dp (23a)mx2L F, F

B. . L- e kH f XcosnO cosmopBy(O,o,-H)d0dqo (23b)

D = + L- ek-3 If I sinnO sinm pBy(O,(p,-H)dOdqp (23c)
mw2 L _. f

Em rL e="- sinnO cosmqp]By(O,',-H)dOdop (23d)

The third alternative uses the Z-component of the residual magnetic field and yields the

following expressions for thes coefficients:
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!I.

Am = .ekam2' f cos nO cos mwpB(,9 H)d 2a
xLkm2 F.r

Dm -=- 2Lkle cosnsR. x~= -9 fa... in

2 = k J sin nO cos m~p B(O, f, -H) dO d (24c)

E.-=- -'• sinne sinmV B.(9,p0,-H)dOdLp(24d)

Generally, the magnetic residual component exhibiting the largest amplitude is the preferred one

for computing the rectangular-harmonic coefficients. This choice will yield smaller coefficient

g errors due to the smaller percentage of rnoise intrinsic to the data for that magnetic component

relative to the others. The Z-component grid was chosen for this purpose in the Juan de

3 Fuca/Explorer region. The resulting coefficients are partially listed to degree 15 in Table 4.

3 Evaluation of the above expressions for the rectangular-harmonic coefficients is

accomplished with the aid of the 2-dimensional FFT. First, note that each residual,

3 magnetic-component grid can be represented in the form of a 2-dimensional, finite Fourier series

3 as follows:

B.(O, 4,-H) = 1; b.,,(-H)ei(9-÷' (25a)
v--N ipa-M

N

B,(1,q,-H) = 1 - (25"o)

v-N Ita--N
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Table 4. Rectangular-Harmonic Model Coefficients of the Juan de Fuca/Explorer Plate

Regions, Low Degree and Order Terms Only; Units: nanoTeslas

n m A3. B.. D.. ED=

1 1 -6.50182 0.90794 10.10035 6.98122

1 2 -4.20178 -4.19915 -8.77588 1.38671

1 3 -0.17999 2.12747 2.20755 2.62100

1 4 -0.26331 -3.23829 0.96876 -1.44732

1 5 -2.97880 -0.39970 -1.28883 -1.16297

1 6 0.24739 1.26363 -1.31373 0.99827

1 7 0.07261 -0.82978 0.78405 0.23625

1 8 -0.19026 0.76457 -0.15335 0.17747

1 9 0.16159 -0.28253 0.38965 -0.44789

1 10 -0.51639 0.44997 -0.63982 -0.07680

1 11 0.16159 0.12405 0.04508 -0.06916

1 12 -0.51639 0.10945 -0.34906 -0.34367

1 13 0.05547 0.09868 -0.18891 0.07211

1 14 -0.32374 0.08613 -0.04772 0.05725

1 15 -0.03293 -0.11430 -0.03724 0.07085

2 1 15.71674 17.28025 18.39594 -5.71595

2 2 -2.36503 -4.43721 -0.32715 7.12863

2 3 -1.61875 -0.47278 -0.32715 -4.94449

2 4 -0.99136 -1.33616 0.32225 2.52737
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Table 4. Rectangular-Harmonic Model Coefficients (con.)

2 5 -0.75027 -0.20994 -2.13968 0.08772

3 2 6 -0.53263 -0.76496 -0.98668 -0.80986

2 7 -0.60334 0.69700 -0.08925 0.71491

2 8 0.22274 0.13464 0.32046 -0.32020

3 2 9 0.06444 -0.35671 -0.00394 0.16452

2 10 0.00910 -0.42301 0.58391 -0.04872

2 11 -0.23317 -0.44016 0.12173 -0.23388

1 2 12 0.03802 -0.16201 0.19692 0.22992

2 13 -0.04182 -0.24281 0.26783 -0.10191

2 14 -0.20038 0.05171 -0.05880 -0.09223

I 2 15 -0.02496 0.16278 0.00662 0.04175

3 3 1 14.69034 6.64214 26.20008 -6.60164

3 2 -6.92724 -1.22531 0.75517 -3.78142

1 3 3 -1.85056 -1.13347 -0.55870 0.53041

3 3 4 -0.58444 0.98213 -0.29600 -1.29544

3 5 0.07912 1.05613 -1.77336 -0.00432

3 6 0.39846 0.04386 0.10321 1.21775

3 3 7 -0.08147 -0.52859 0.56867 0.05593

3 8 -0.11638 -0.16341 0.51915 -0.13795

3 9 -0.39917 0.27863 -0.31902 -0.17071

1 3 10 0.41564 0.78612 -0.43821 0.49178

!
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Table 4. Rectanagiar-Ha[Umonic Model Coefficients (con.) I

3 11 0.50470 0.05392 0.02390 0.44870

3 12 0.07068 0.23216 -0.07872 0.03265 3
3 13 0.20408 0.00148 -0.11725 0.17782

3 14 -0.05528 -0.08068 0.24916 0.06604

3 15 0.03076 0.05477 -0.00173 -0.22982 3
4 1 -6.72438 5.38535 2.12106 -10.24770

4 2 -1.76723 2.90900 7.01444 0.53800

4 3 -0.40940 0.64107 -0.80526 -0.26738 3
4 4 -0.65961 -1.39914 -0.59056 -0.91643

4 5 -0.88687 0.32765 -0.42612 -0.86223

4 6 0.43625 -0.16263 -0.17006 -0.43458

4 7 -0.66605 0.63265 -0.45634 0.21541 3
4 8 0.65868 0.08300 0.04932 0.22266

4 9 -0.35682 -0.32375 0.06753 0.00346 3
4 10 -0.31478 0.00122 0.24568 -0.32948 3
4 11 -0.22759 0.11451 -0.23232 -0.43214

4 12 0.05813 -0.13130 0.02407 -0.02362 1
4 13 -0.18008 -0.01142 -0.00368 -0.20583 3
4 14 0.15060 0.10593 -0.10623 0.06501

4 15 -0.02681 -0.15914 0.02728 -0.00179

5 1 -9.30405 -2.29585 0.19474 -11.34965
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Table 4. Rectangular-Harmonlc Model Coefflcients (con.)!
5 2 3.86618 1.33161 0.43339 -1.80079

3 5 3 -1.41536 1.66478 -0.85717 1.08008

3 5 4 1.02127 -1.91231 0.59884 1.66993

5 5 -1.18006 -0.42611 0.38220 -0.17926

3 5 6 0.42373 -0.07830 -0.19304 0.17104

55 7 -0.71082 -0.53879 0.81771 -0.81005

5 8 -0.32892 0.48116 -0.34766 -0.26324

I 5 9 0.04880 0.48425 -0.18618 0.12710

5 10 0.66700 0.13226 -0.01505 0.66169

5 11 0.06542 -0.41894 0.38528 0.12194

5 12 -0.10911 0.17215 -0.08716 0.02790

3 5 13 0.12715 0.01377 0.00680 -0.00514

5 14 -0.02725 -0.00738 -0.12867 0.05027

1 5 15 0.08473 0.01906 0.06906 0.12909

3 6 1 -1.28958 -1.31317 -1.35462 -0.85454

6 2 2.25894 -2.98705 -1.59060 2.22455

6 3 -1.39635 2.90327 2.18386 -2.61767

3 6 4 1.09335 0.01516 -1.91373 1.55669

6 5 -0.43473 0.33791 0.72297 0.51169

6 6 0.02327 -0.55756 -0.15552 -0.28759

3 6 7 0.03012 0.38200 -0.19865 0.46374
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Table 4. Rectangular-Harmonic Model Coefficients (con.) I

6 8 0.67396 -0.27972 0.42758 0.19033 I
6 9 -0.40740 -0.34895 0.14588 -0.70268 3
6 10 -0.23443 0.20503 -0.43304 -0.22173

6 11 -0.12858 0.19569 -0.12127 -0.05647 3
6 12 0.04700 -0.03271 0.02773 0.01470 3
6 13 -0.13390 -0.00309 0.036 72 -0.17762

6 14 -0.02297 0.09231 -0.10085 0.00624

6 15 -0.00697 0.11875 -0.03650 -0.05949 £
7 1 0.42043 1.76266 1.61781 -0.70011

7 2 -1.73306 -0.44276 -2.84195 0.38552

7 3 1.58631 -0.29854 0.83468 -1.85681

7 4 -0.70798 -0.00683 0.01928 -0.12694

7 5 -0.84105 0.81417 -0.10592 -0.70527

7 6 0.50023 -0.00103 -0.18092 0.91178 3
7 7 -0.70702 -0.11124 0.19987 -0.58793 N

7 8 0.16677 0.56344 -0.66850 0.22586

7 9 0.20803 -0.31914 0.35395 0.46763

7 10 0.06335 -0.01063 0.24076 0.11647

7 11 -0.04250 -0.28750 0.24752 -0.11983

7 12 -0.13971 0.28525 -0.19586 0.03015 1
7 13 0.27651 -0.06010 0.06477 0.17456
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Table 4. Rectanguiar-Hamonic Model Coefficients (con.)

7 14 -0.06703 -0.16502 0.14928 -0.00955

3 7 15 -0.03639 -0.08032 0.07791 -0.17341

8 1 3.31603 5.58220 -0.44074 -0.79490

8 2 -0.95824 -4.46747 1.86770 -0.39213

5 8 3 -1.34737 0.91580 -1.44776 0.25701

3 8 4 1.10121 -0.29209 0.70388 -0.42378

8 5 -0.30687 -0.29736 0.50434 -0.69129

1 8 6 -0.13969 -0.04296 -0.53447 -0.26891

3 8 7 -0.03712 0.36213 0.02546 0.62256

8 8 0.25247 -0.45761 0.44310 -0.11620

1 8 9 -0.34616 0.32148 -0.11331 -0.26649

38 10 0.18843 0.23557 -0.17133 -0.20744

8 11 0.10870 0.05990 -0.11914 0.13291

8 12 -0.02481 -0.19952 0.23894 -0.17592

3 8 13 -0.19212 0.19060 -0.23797 -0.12452

8 14 0.23414 0.06747 -0.04150 0.19298

1 8 15 0.01644 -0.09467 -0.00029 0.06760

S9 1 -2.18537 3.48995 -1.57473 4.78597

9 2 2.16019 -2.49957 0.41614 2.09978

9 3 -2.26432 1.03862 0.00126 -1.16616

3h9 4 0.77841 -0.74632 -0.37452 0.35329

LI
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Table 4. R•€ngiar-Harrinic Model Coefiddents (coan.)

9 5 -0.17226 0.36005 -0.29210 -0.29683

9 6 0.30127 -0.45394 0.18381 0.83077

9 7 -0.83058 0.26026 0.17586 -0.87825

9 8 0.58998 0.40076 -0.69287 0.66965

9 9 -0.17553 -0.44890 0.51060 -0.08050

9 10 0.04407 0.08372 -0.09538 -0.07233

9 11 0.03944 -0.07694 -0.04026 -0.11101

9 12 0.19002 0.01810 -0.12889 0.32356

9 13 -0.04717 -0.21440 0.33878 -0.09185

9 14 -0.16804 0.06191 -0.16683 -0.13568

9 15 -0.03636 0.08599 -0.00703 0.00700

10 1 -1.53264 0.88371 1.29867 -0.03071

10 2 1.50872 -0.92994 0.03802 -0.20592

10 3 -1.81144 -0.57259 0.06813 -0.74301

10 4 0.16088 0.55026 -0.04285 -0.86953

10 5 -0.30456 -0.23105 0.07705 -0.90593

10 6 0.37293 0.55645 -0.49604 0.22612

10 7 0.07846 -0.58866 0.17024 0.33061

10 8 -0.52099 0.28158 -0.04822 -0.55390

10 9 0.14498 0.07277 -0.16160 0.15475

10 10 -0.02714 0.06984 -0.10329 -0.01712
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Table 4. Rectangular-Harmonic Model Coefficients (con.)

10 11 -0.04698 -0.10054 -0.00504 0.13541

10 12 -0.18429 0.17042 -0.07670 -0.12646

3 10 13 0.25393 0.06462 -0.05330 0.12606

10 14 -0.02404 .0.12619 0.11820 0.00188

310 15 -0.00626 0.00404 -0.00203 -0.0024

11 1 0.68794 2.00314 -1.82657 1.29417

11 2 0.68014 -2.00106 0.49140 -0.01759

1 11 3 -0.64070 -0.22335 0.41249 -0.07980

1 11 4 0.40475 0.12301 -0.11870 -0.20360

11 5 -0.43983 -0.53327 -0.08233 -0.20360

111 6 0.04881 0.10360 0.04355 0.38457

11 7 0.13693 0.20792 -0.26172 -0.22968

11 8 0.19715 -0.11042 0.40007 0.01963

I 11 9 -0.21894 -0.14376 0.01066 0.17168

11 10 -0.08586 0.18476 -0.05054 -0.21125

11 I11 0.22761 -0.10226 0.16959 0.12777

11 12 -0.12130 -0.10635 0.08399 0.06518

311 13 0.01405 0.12173 -0.14097 -0.09379

11 14 0.04797 -0.04983 -0.02296 0.06785

11 15 -0.02768 0.07813 -0.00798 -0.01461

3 12 1 -1.90696 2.52971 -4.09107 3.08946
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Table 4. Rectangular-Harmonic Model Coefficients (con.) -

12 2 1.59213 -0.73171 1.46118 0.80026

12 3 -0.14431 -0.39781 -0.69909 0.13509 U
12 4 -0.21148 -0.33016 -0.16375 0.21105

12 5 -0.36754 -0.57927 0.13807 0.37689

12 6 0.33746 0.01655 0.01266 -0.07096 3
12 7 -0.19403 -0.23841 -0.15226 -0.02569 f

12 8 -0.20600 0.24767 0.03850 -0.03410

12 9 0.14263 -0.13189 0.02403 0.04626

12 10 -0.15607 0.04710 0.10123 -0.07676 3
12 11 0.10118 0.10544 -0.21553 0.00513

12 12 -0.01595 -0.14016 0.04774 0.05590 1
12 13 -0.08750 0.05428 -0.05250 -0.06875

12 14 -0.07930 -0.01179 -0.01840 0.07531

12 15 -0.05007 -0.02926 0.04668 -0.07477 1
13 1 -4.67324 4.92206 -0.48776 1.65893 3
13 2 2.04069 -0.47986 -0.02500 -0.68042

13 3 -1.38261 0.21989 -0.59911 0.40972 i
13 4 0.21093 0.02153 0.64767 0.04682

13 5 -0.49765 0.15527 -0.26342 -0.33375

13 6 0.11866 0.28142 0.20178 0.04789

13 7 -0.12871 -0.11888 -0.28160 -0.11622

30
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Table 4. Rectangular-Haruosk Model Coefficients (con.)

13 8 0.07702 0.09139 -0.03837 0.21612

3 13 9 -0.02636 -0.06746 -0.03337 -0.16914

13 10 0.10606 0.11825 0.03435 0.12884

13 11 -0.01994 -0.11033 0.06455 -0.12492

1 13 12 -0.08246 0.07670 -0.05334 0.12445

3 13 13 0.05388 0.01529 0.06806 -0.03654

13 14 -0.03364 -0.03445 -0.08154 0.04046

13 15 -0.00051 -0.02318 0.07854 0.00493

5 14 1 -2.lR45u 5.23947 2.84025 -1.75222

14 2 2.05113 -1.83951 -1.14319 -0.07571

14 3 -1.51667 -0.12111 1.02495 0.36313

3 14 4 0.75293 0.22577 0.05374 -0.51673

14 5 -0.49578 -0.32312 -0.04813 0.14631

14 6 0.37889 0.15998 0.29040 -0.16016

14 7 -0.34865 -0.31172 -0.06350 -0.06328

14 8 -0.05944 0.34002 -0.07941 0.01225

14 9 0.10337 -0.23342 0.11621 0.03923

14 10 -0.15907 0.09641 -0.12157 -0.24132

14 11 0.09470 0.00729 -0.07918 0.15628

14 12 -0.06836 0.00526 0.13284 -0.10855

14 13 0.02588 0.04462 -0.14339 -0.02591
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Table 4. Rectangular-Harsnkic Model Coeficilents (con.)

14 14 0.00271 0.00534 0.06132 0.10086

14 15 0.01955 -0.01534 0.02426 -0.01894 1
15 1 -0.49015 1.55673 2.55386 -5.02614

15 2 0.11961 -0.83393 -2.46010 0.95284

15 3 -0.15853 0.47131 1.06937 0.71696 3
15 4 0.38033 -0.33976 -0.27622 -0.51193

15 5 -0.51728 -0.04921 -0.04423 0.35401

15 6 0.34257 0.22986 -0.06258 0.05729

15 7 -0.01659 -0.26012 0.16216 0.07511

15 8 -0.17459 0.09203 0.07409 -0.04397

15 9 0.11633 0.02952 -0.03338 0.05132

15 10 -0.06943 -0.10939 0.08129 0.00419 3
15 11 0.05010 -0.10604 0.00194 -0.01563

15 12 0.06284 -0.10455 0.05631 0.01565

15 13 -0.11932 0.00911 0.00218 -0.07397 3
15 14 0.04238 0.04580 -0.04159 0.00744

15 15 -0.01570 -0.01475 0.00892 -0.00096

I

I
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* BO~rp-.H)- ~(25c)
v-N p-M

I The complex-valued Fourier coefficients b. It (-H), b7 P (-H), and b. ,,.(-H), which have

units of nanoTeslas (nT), are known quantities since they can be obtained by taking the FFT of

I, their respective X-, Y- or Z-component, magnetic-residual, survey-generated grids.

Consequently, when eqs. (25a, 25b, and 25c) are inserted into eqs. (22a through 22d, 23a

through 23d, and 24a through 24d), the rectangular-harmonic coefficients can be analytically

evaluated in terms of their respective Fourier coefficients by converting the sine and cosine

functions in the above expressions to their exponential forms and employing the Dirac delta

function identity:

S(26)

ii over all integrals involving the parameters 0 and (p. The integrals to be evaluated are of just the

5! following two basic forms:

""F•e- sin s fl dQ= in6(c +X) in (i- i X) (27a)

I
•e-l't cosldQ=it B~x + X.) +x8(c -X) (27b)

3Consequently, eqs. (22a) thrugh (22d) are evaluated as:
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Am. = + I-L (Ibz..... -w bz.n.... + b1x.- - bx,anmCEIU(k

B.. = + -L. (bx.S...... x. -= - bx.-... + buin ) =H (28b)

Dm.. + I& (bx,.a..1.. + b1,.a.... + bx.-.L + bx.m.. eIkin& (28c)

- Lg (I

i-L-(bx-'%"M bxs,=- bx--, - ,., e mJI(28d)

Equations (23a) through (23d) become:I

Am. = + wL (,by.-%-=.i + br,.,.. - b,,-,,. - by.... Cen""" (29a)

B. + LY b.a, + bys- +b%m +~ by..e-el (29b)

D., = + ..EY. (by,.%-=. - by,%.-m - by,..., + by...) ekinH (29c)3

E. = - i L (by, %-In - by.s.-a. + by-a - by.,,,) ek (29d)I

The evaluation of eqs. (24a) through (24d) yields the third alternative means of computing the

rectangular-harmonic, magnetic-potential coefficients:I

A =- r bj.-.- + bza.- + b?-,j + b&,,,, ek-M (0a
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U - kmL -bz,.. + bz.-%... bz...) (30c)

EM + k-1 bz.-L.- - bza..- - bz.-%.u. + bz.m) •kml (30d)

U
The rectangular-harmonic coefficients of the local magnetic potential are thus determined

through a two-step process:

3 (1) Perform an FFT on one of the three available gridded vector components of the

local magnetic field.

(2) Use the Fourier coefficients obtained in step 1 to evaluate the rectangular-harmonic

3 coefficients of the local magnetic potential using the corresponding set of

equations derived above for these coefficients.

1 3.2.1 Computing the Local Magnetic-Field Vector from the Model

Having evaluated the coefficients of the local rectangular-harmonic model, it is now desirable

to recompute all three vector-magnetic components B, , By , and B, . The reason for this is that

sI the grids derived from the survey data are not entirely consistent with each other because of

3 instrument noise and other experimental factors. However, the magnetic-field components

derived from the model are necessarily consistent with each other by definition. As a

i consequence, geophysical interpretations of a region based on least-squares or other

3 inverse-modeling techniques, using magnetic-field parameters derived in this way, are less

ambiguous due to the reduced noise level of the inverted data. Secondly, it is sometimes

I desirable to upward or downward continue the original survey data to some other altitude ff. A
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local potential-field model permits this procedure to be performed with relative ease using FFT

procedures and specially designed filters, if they are needed. 3
We now assume that the rectangular-harmonic coefficients, A,, B%, D., and E,

are known and seek to detemine their corresponding Fourier coefficients b1. ,(-H'), by 0(-H),

and b• , ,(-H'). Equations (25a, 25b, and 25c) can easily be inverted via the usual techniques, 3
which involve the use of eq. (26) to yield: 3

bvt(-HI) = (4 1t2)- J1 J e-i(vO÷9)B,•0, p,-HI)dfdq, (31a) I

byv(-HW) = (4nt' J e-i(v6+÷'L By(eO,•,-H/)ded~p (31b)

b.(--I) = (4x 2,- J J e-W"÷'O•) B,(O,,,-H')dedcp (31c)

magnetic-vector components by the subscripts x, y, and z, while parameters related to the

magnetic-gradient components will be explicitly referenced by the subscripts xx, xy, xz, yz, etc.

Greek letters will then be used to reference either Fourier coefficients or rectangular-harmonic 3
coefficients with the understanding that rectangular-harmonic coefficients with indices equal to 3
or less than zero are defined to be zero. Greek indices now have the ranges: -N < v:5 +N

and -MS pIxs +M, where for the Juan de Fuca/Explorer plate region N = M = 128. 3
After inserting eqs. (21a, 21b, and 21c) into eqs. (31a, 31b, and 31c), respectively, and

performing the necessary integrations, which are of the following three basic forms: I

36



E, f -m q COS os kq dtdTj it2 {6j- v) 6(k - ) + v ( L
(32&)

+U - v)[-)- 9.] + 3[(-j) - v]S1(-k) - IL)}

* F .~ +J~ cosjt sinkil d dni =I - i 2  j - v)6k- 10) + 6l:(-j) - V] 8(k - p) ( 2)

-6(i - V)8(-k) - A] -8[-)-vg-k- j

F .E e -i" % +' TI sinj4 sinlci d 4 O~ i t' { B(j - v) 6(k - 9)- 8[(- j) - v] 6(k - IL)(3 c

6I - v) 8[(- k) - g.] - 8[-)- v] 6[(-k) - gL]I

3 where again the Dirac Delta function identity of eq. (26) has been used, we obtain with minimal

effort the following results:

3b.~,,(-H') = + ZL-[i(Avji& + A-,, + Av- + A-p+ (Bv.I + B-.p.j - Bv-p-B.p

(33a)
-D., + D-v, + D%,- + D-,p)+ i(vL -v, - Ev, + -,*]ekW

3yI(-I = + -L-[(A,+ A-.,, + Av- + A~)-,v Bv.IL + B-v~ - B.%- (33b)*

+D.L- D.,, + Dv,- - D.,$)+ -Ev, E-.vm., - Evg..g + EV- -~u 3b

3b.yR(-H') = + kpL[A.L+ A-v + Av- + Av.~)- i(v.p + B-, - BV,- B-,

I- iDp - D-v~ + Dv- - D -v. -Ej -v.LEp+Fv-

1 37



where it is understood that the rectangular-harmonic coefficients are defined to be zero if any

index is less than or equal to zero. The above result was obtained using the fact that k,, = k,

Having thus determined the Fourier coefficients from the model, an application of the Inverse

FFT, which is essentially an application of eqs. (25a, 25b, and 25c) with H replaced by H' (the

new upward/downward continued altitude), yields the desired self-consistent set of uniformly

spaced grids for the local magnetic-field vector components. For the Juan de Fuca/Explorer

region, these are illustrated in Figures 3a, 3b, and 3c, corresponding to the X-, Y-, and

Z-components at the original survey altitude Fr = H.

3.2.2 Computing the Magnetic-Gradient Tensor from the Model

The magnetic-gradient tensor *(x,yz) is the gradient of the magnetic field B(x,yz). That is:

S(x,y,z) = VB(x,yz) (34)

In tensor notation, this equation becomes:

(XyZ) = Bp,(x, y, z) = -V,,(X, y,z) (35)

Since interchanging the order of differentiation of the magnetic potential does not affect the

result, the magnetic-gradient tensor is necessarily symmetric. The local magnetic potential also

must satisfy Laplace's equation. This is equivalent to stating that the trace of the

magnetic-gradient tensor must be zero. Contracting the indices g and v yields the trace:
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tilL 0 (36)

The symnty and Umce conditions on the local magnetic gradient *(x,yz) reduce the number

of its independent components to five from the original nine, just as was the case with the

regional magnetic gradient. Of the five t components, two must be diagonal

elements, and three must be off-diagonal elements. We will nevertheless examine all three

diagonal components as well as three off-diagonal componets for a total of six components.

Then, taking the indicated derivatives of the local magnetic potential, the five independent

components plus one extra diagonal component take the following forms:

N M

(x, y,z) ffi - "~�-�,. n2[A.. cosnO(x) cos mf#(y) + B.. cosnO(x) sin mn(y) +

(37a)
D.. sinOnlx) cosmp(y) + E.. sinOnix) sinm9(y))e-''

N M

,.,(x,y,z) z + !IL ' nm[A.. sinn0(x) sinmqy(y) - B.. sinn8(x) cosmqpy) -
owl Malm

(37b)
D.. cosne(x) sinm4(y) + E.. cosn6(x) cosmnp(y)]e--.z

N M533(xlry,z) = - L B.-
I n nk.. [A.. sin nOx) cos mp(y)+B. sin nO(x) sin mp(y)

(37c)
V.. cosnOx) cosmqty) - E.. cosnO(x) sinmfp(y)]ek-"z

,(X~Yz) = L I 2 IU12 (A.. cosn(x) cosm ,(y) + B.. cosnO(x) sinmq y) +
not awl

(37d)
D.. sinnO(x) cosmpf(y) + E.. sinnO(x) sinimn(y)] e-
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83,.(X. yz) - I Y, M 4 . (Ass. Cos nO(x) sin mp(y) -B,, cos nO(x) cos mq(y) +

(37c)
D,, sinnO(x) sinm~(y) -E,. sinnO(x) COSMp~y)Jeksmz

&SA, ,(xyZ) -+ 11 Q. k( A.. cos nOx) cos mq(y) + B.. cosmrO(x) sin mfp(y) +

(37f)
D,, sin nO(x) cos mup(y) + E,. sinnO*x) sin mp(y)) ek.-z

On the other hand, each of the magnetic-gradient components may be written in the form of a

2-dfimensional finite Fourier Transform at an altitude z = -Fr which may possibly be

3upward/downward continued from the, survey altitude z.= -H ,so that:

N ?d

~33O~q,-H) =pxV,d-HI) ei(vsa it9) (38a)

v's-N pa'-hi

v-N M'-

= ~ xyvia(-H-)eiv9 (38d)
v's-N i's-h

S,(Bp, -HI) 1 1: A~V(- e(V+q (38c)
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vi-N Irnhi

Using eq. (26), eqs. (37a through 37f) can be inverted to yield the Fourier coefficiants in

trams of the rectangular-harmonic coefficients A.., B%., Doa, and E.a yielding:

(4x 2)-' J JFS e-'(O*,'') X,,q(,.-H')d~di (39a)

SPxzl(-HI) -(42)-I' T_ JT e-'i('÷" l.,(O,,-H')dedo (39c)

1.zvp(-H') = (4 2)' F JE e-(vO÷P9 Sy.(O,, -H')dOdqp (39c)

Dz=vp(-HI) - (42)-' J J e"t(v9+'* &,,(O,p,-H')dedp (39f)

Inserting eqs. (36a through 36f) into eqs. (38a through 38f), respectively, and using eqs. (27a

and 27b) to evaluate the resulting integrals, the Fourie coefficients for the magnetic gradient

components reduce in a straightforward manner to the following:
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I PZvRt(-H') 23 V[(Av., + A-v.,p + v + A-v,

5iV. + B-~ - Bv-p-B.p

i Dj -v + Dv- - D-,p(40a)

g(v~ E-V - Ev.-,L + EV-LAei.LH

Ixv(-I =ZX Vg (A + A-~ + Ap+ -,L

-i (Bv.R + B -,, - Bv -,L -B v-

- D-.M DV.M -(40b)

+i(Bvp .v~ + Dv- - D-v(44k

- (Dvp -. p - Ev- + E-,p) e- V ,

I ~(4i' =+ + AA+-

+ B...v, --(40c)

+DL- D-., + Dv-, - Dv-

giB~ B-v - Bv-+- -,,

470d



",.sp(-H')= +-Y Jtkv[i(Avp + A-v, +Av-p+ Av._,

+(Bv. +Bv. - By-- BVP

(40e)
+(Dra, - D-vp + Dv.-I, D-,.-,(

-i(E.,p - E-..g - Ev.-p + E-v.-,L]e-k"H'

PzVI-HI) = + -L-k,•L( ,. + A_,,L + Av..p + A_,._•

-i(B V.. + B_.. - B v.-, - B-v.- L)

-i(Dv, - D-v., + Dv.-p - D-v.-O 4)

-(Ev. - Ev.p - Ev..p + E_.,-.t e-kvH'

Thus, given that the rectangular-harmonic coefficients have previously been determined as

explained in section 3.2, the Fourier coefficients, which are associated with the local

rectangular-harmonic potential, are easily computed through eqs. (40a through 40f) and then

inserted into eqs. (38a through 380, which may be used in conjunction with an FFT algorithm to

generate all of the local magnetic-gradient components of the surveyed area. Figures 4a through

4f illustrate the result of this computational process for 6 local magnetic-gradient components of

the Northern Juan de Fuca/Explorer plate region. Figures 4a through 4f correspond to the

magnetic gradients S,, Y, S., 4, SP, and S, , respectively. Figure 4f in particular

clearly displays the north-south oriented, magnetic-reversal lineation patterns of the Juan de

Fuca ridge axis and the magnetically quiet subduction zone adjacent to the axis.
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i.3

4. INVERSE MODELING (MAGNETIC DEPTH-TO-SOURCE)

The previously derived rectangular-harmonic model of the northern Juan de Fuca/Explorer

plate region is of phenomenological origin since it is based on "observed" survey data. 3
Consequently, the uniformly spaced magnetic component grids of the magnetic-field vector

B.,(x,y,z), depicted in Figures 3a through 3c, and the uniformly spaced magnetic component

grids of the magnetic-gradient tensor V.,(x,yz), depicted in Figures 4a through 4f, all of which 3
were generated from the model, are also of phenomenological origin and are therefore annotated

with the subscript "obs". A single grid location, then, has attached to it three vector-magnetic

component observations and nine (five of which are independent) gradient-tensor component

observations. We now ask: What is the location, distribution, and equivalent crustal

magnetization M(r) that generates the observed magnetic-vector and magnetic gradient-tensor

fields?

The answer to this question draws upon Maxwell's equations, which, for the magnetostatic I
conditions involved in this problem, reduce to the following Poisson equation, written in

Gaussian units, for the scalar magnetic potential 40(r):

V20I(r) = 4-xV*M (41)

which has the well-known solution:

41'(r)i-J • d3r' (42)

V1

where V'(r') is the volume occupied by the magnetized crustal materials and where r and r' are
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the position vectors from the origin of the rectangular coordinate system to the point of

3 o rbawvation r(x,yz) and to the location r'(x',y',z') of the magnetized, oceanic crustal material

3 within the volume V' that generates the observed fields. Through the application of the

divergence theorem, as well as through the use of various transformations and identities, all of

[I which are discussed in detail by Quinn and Shiel (1993), eq. (42) can be put into the following,

3ii more useful, form:

I00r)= V.J d 3r (43)

IvI

3 Two assumptions are now made. First, the magnetic-field vector and gradient-tensor

componets, measured at the point r(x,y,z), which corresponds to a particular grid location, are

3 Igenerated by magnetized sources in that part of the oceanic crust which is centered directly

below the grid location under consideration. Second, the distribution and strength of

magnetization in the oceanic crust is slowly varying in the lateral directions away from this grid

location, so that within the confines of a few kilometers (e.g., 5 kIn) of this point, the

3mag ztion may be considered uniform within the volume V1 and hence independent of r'.

The justification for the first assumption rests on the knowledge that the vector magnetic-field in

the far-field approximation varies as RI3, while the magnetic gradient-tensor field varies as R,

where:

P, a I r - rv = J(x _x/)" + (y _ yl)2 + (z _z/)2 (44)

is the distance between a point within the magnetized source volume V' and the point of
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observation. The second assumption rests on the knowledge that the peak-to-peak separation of

magnetic reversals, at least in the Juan de Fuca region, is on the order of 60 km. Consequently, I
eq. (43) may be written as:

6rr) dM3r (45) 1
VI

Taking the negative gradient of this potential yields the magnetic-field vector. 5

B(r)=M.Vf V(IrV (46)£ I

The volume V may be characterized as a single rectangular prism of dimensions ), x x A,

which were a priori taken to be 5-km x 5-km x 1.5-km on the basis of drill hole data and our

knowledge of the far-field behavior of the magnetic field and its gradients. The prism's center is I
located directly below the known observation point (xo, y.), at an unknown source deptho, I
which must be detennined from the observed data along with the magnetization vector M, which

has constant components M, = M,, M2 = M., and M3 = M. I

Using the rectangular-prism geometry, eq. (46) takes the following form in tensor notation:I

Bp(x, yz) = Ap %MI (47)1

where Einstein summation over the repeated index X (one raised and one lowered) is assumed

and where the elements of the A matrix are given by the relation:I

6 I
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A L(xyz) dz (48)

These matrix elements can be evaluated analytically as discussed by Quinn and Shiel (1993).

The results of this evaluation are given in Table 5, where the notation 1..,,, indicates that the

3 parameters x', y', and z' are to be evaluated at their respective upper and lower limits. That is:

I u.9.21 a I 2 - Y-lye 1 2 (49)

31 Consequently, each matrix element in Table 5 has eight terms. Furthermore, it is clear from

eq. (48) that the A matrix is symmetric. It can also be shown that this matrix has zero trace if

the point of observation is outside the volume V and a trace equal to 4U f the point of

observation is inside that volume. This matrix is also a tensor.

Taking the gradient of eq. (47) yields the magnetic-gradient tensor due to a uniformly

!

&v(x,yz) = Aox/vM' (50)

where the derivatives of the A matrix elements can also be evaluated analytically and are given

in Table 6.

I The magnetization of the prism can be formally determined by inverting eq. (47), which

yields the result
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Table S. Elements of the A Matrix

A12 = - inCR + (z - e)] I.,,.,

A, 3 = - In[R + (y- y)] I.,.,,

A21 = - In[R + (z- z')] .a,,

An = + tan-' - JI,.y ,, t

A23 = - InCR + (x - x')] I.,.,

A3, - - ÷nER + (y - y)J I,. !

A32 = - bInR + (x - x')] x/, .,., /

A 33  = + L [ (- '/) 'J '
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I Table 6. Derivatives of the A Matrix Elements

3 All/, + t, 7' +

1 2112  ' I ]~ I yIz

R1(x-xl)1

A12/3  R iy~3 X 'y z

I AI [ - Y,'~

Ann -L I ,-t)I.yI,z'~

jA 2112 = 'L(- j

3 A, 13  = - j[IR+(z-y'] IXI.YI.ZI

IA 21/3 = -- R Ijfz
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Table 6. Derivatives of the A Matrix Elements (con.)

A222 -+ + ,+--__] .,.
R +(R-z') R+ (zv

A.22/3 = - I L ÷(Y-0, ' y J , z=

R R+(x-z)" a+,.], .y,

An= (- 0

A23/3 = - IL + J

A31/ = - [" (-. I, ,,

A3 1/, = - j- I,,./, ,, --Ii

A31/3 = -,."
,'-- z '-) 1 I,. .,A~,,3 = - iL i .-E '

A32,1 = - j" I

A 3212 = -- I•.L.-y)

A 32 /3 = - I +(--4
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II.

Table 6. Derivatives of the A Matrix Elements (con.)

3 A3311 = - r -+ ,.,.1

Lr (,-,•

3A33/2  - •'[•31 ] '

A33 /3 = + (Yr

I _+(__x-_ _l _+-"-y_)'J
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M- % X•B, (51)

where the matrix I is the inverse of A. Then, inserting this reult into eq. (50), yields:

SI,, = A 1•.iXK°Bo (52)

This is the main result. It is a nonlinear equation for the magnetic-source-depth z;, givet the

"observed" magnetic-field vector and gradient-tensor components at the point (xo , yo). The

magnetic-source-depth can be determined by a nonlinear least-squares minimization of the

chi-square (;e) function:

3 3

X2 = I I I (53)
i llL=J Vol|

with respect to z . For the Juan de Fuca rgion, this chi-square function was evaluated as the

value of a; was varied at 0. 1-km intervals from the known bathymetric surface to slightly beyond

the estimated Curie depth, which in turn was based on a spherical-harmonic model of heat

flow (Pollack and Chapman [1987]). The magnetic-source-depth then corresponds to the

minimum value of j2. Performing this procedure at each grid point of the survey area yields the

magnetic-source-depth of the region as depicted in Figure 5. Clearly defined in this figure, to a

high degree of resolution, is the subduction zone just west of Vancouver Island and west of the

state of Washington.
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Having evaluated the magnetic-source-depth at each grid point, the A matrix and its inverse

are, as a consequence, also completely determined at each grid point. This allows the prism

magnetization to be evaluated at each grid point through the linear inversion described by

eq. (51). The resulting three components of magnetization, which in the Gaussian units used

here are expressed in nanoTeslas, at each grid point of the Northern Juan de Fuca/Explorer plate

survey region are illustrated in Figures 6a, 6b, and 6c. Figures 7a through 7e are selected

magnetic-source-depth profiles of the Z-component magnetization. Figures 7a and 7b are

profiles along constant longitude bands, while Figures 7c through 7e are profiles along constant

latitude bands. The depths and magnetizations in these figures, though reasonable, are not

considered to be absolute, since the a priori assumptions are only approximately true. Secondly,

in order to speed up the inversion process an extra "nonessential" constraint was applied to the

total magnetization, which limited its value to 4 Amps/meter in SI units. The total magnetization

computed during the inversion always reached this limit, indicating that our choice was too low.

In the mid to late 1980's, when this work was actually performed, this limit was thought to be

reasonable. More recent dredge sampling indicates that the magnetization of younger basalt

materials near ridge crests is as much as an order of magnitude greater. The vector components

were allowed to vary freely within the limits imposed by the constraint on the total

magnetization. The relative depths and magnetizations, so derived, appear at least qualitative' .,

correct but may require appropriate scaling to be quantitatively useful. The fluctuations observed

in the depth-to-source magnetization profiles are generally consistent with serpentinization faults

generally found at ridge crests (Francis, 1981). For a variety of reasons, we have not found the

resources to rerun these computations without this extra, nonessential constraint on the total

magnetization as we would prefer to do.
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5. COMM ON NONUNIQUENESS

The inverse geopotential modeling problem is notoriously nonunique. That is, for a given set

of magnetic-field survey -- - __ts, many distributions of magnetization may be found that

can reproduce the observed magnetic field. This is true regardless of the accuracy of the

magnetic-field measurments. The way around this difficulty is to make reasonable assumptions

based on a priori information that may resrict the possible source geometry and reduce the

number of possible unknown pwaruters. In the present case, we assumed a rectangular-prism

Seoay baned ma the idea that the lateral magnetic character of a large oceanic region does not,

as a rule, change drastically over the course of a few kilometers. Furthermore, this choice of

geometry was based on drill hole and other data which indicated that the largest source of

magnetization in the ocean crust is confined to the basalt layer. The choice of the rectangular-

prism geometry still left nine parameters to determine, three components of magnetization, three

coordinates specifying the center location of the prism, and three prism dimension parameters.

Then, given only the vector magnetic-field measum-ents (i.e., no gradient data) as is frequently

the case, defining the elements c, j = 1,2,...6 to correspond to the prism parameters (X,,

X, ., and ) and neglecting magnetic-field measurement errors, we find that a variation of the

parameters c• in eq. (47) yields:

BP, ML 8+ Ap MX" = 0 (54)

which implies:

= Xa aA • M8C (55)
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Equations (54) and (55) state that without any further constraints on the geometric parameters

cj, any variation in one or more of these parameters can be offset by a compensating variation in

the magnetization, which will leave the magnetic field unchanged. So, without further

constraints, the solution is ambiguous. This ambiguity is eliminated by first demanding that the

prism be centered directly below the particular grid point under consideration. This means that

3 8c, =ck = 0. Further noting that the magnetic field falls off sharply with distance from the

source, a cutoff length to the lateral dimensions of the prism can be imposed (we used 5 kIn), so

that c4 = sc, = 0. Drill hole, seismic, and other data indicate that in the ocean, the primary

source of the crustal-generated magnetic field is located in the basalt layer which is

approximately 1.5-km thick. Using this value for c6 sets 8c6 = 0. This leaves the source depth

c, = 7;, as the renaining undetermined geometric parameter, which, without further constraining

information, will still lead to a nonunique solution. The required new information comes from

our knowledge of the magnetic gradient. A variation of the geometric parameters in eq. (52),

again ignoring measurement errors, so that 8S, = 0, yields:

I aXLv ,l•.

xBs + A,., -R"'B}, =B0 (56)

3 Since k = 0 forj * 3 , eq. (56) reduces to:

IXLB , + AaLfiA c. a c, = 0 (57)

This is actually a set of 9 equations, 5 of which are independent. Each of these equations
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implies that the source depth uncertainty 8c3  0 8z- =0, since the term within the brackets is not

zero in general.I

Thus, the method used to determine the magnetizations and source depths yields a unique 3
solution at least to the extent that the arbitrarily imposed constraints on the lateral prism

dimensions are satisfied. The largest source of error in this procedure results from the

assumption that just one magnetic source exists beneath a specified grid location. Actually, 3
weaker sources exist at shallower depths. The characteristics of these weaker sources can be

determined through an iteration process which removes the magnetic fields generated by

magnetizations obtained through the inversion procedure from the original survey-generated

rectangular grids of crustal magnetic-field and gradient-tensor residuals. This process may be

repeated until the residual magnetic-field vector is of the order of the measurement errors

associated with the survey. For each iteration, the same uniqueness arguments apply, as do the

provisos.

As a final note, it should be kept in mind that we could have minimized eq. (53) with respect

to the lateral dimensions of the prism (AX and k) as well as the prism's source depth;,. This

removes the arbitrary nature of the lateral dimensions at the expense of considerable amounts of

computer time. However, this would not resolve the ambiguity problem since, as the above

exercise indicates, for any particular source depth, an infinite set of lateral dimension

combinations will satisfy the minimization problem. The addition of one more physically

reasonable constraint would resolve the ambiguity. For example, one could also simultaneously

demand that the prism volume be a minimum. The physical basis for this particular constraint is

rather dubious and no other physically reasonable constraints were found. So, this approach was

not taken.
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